Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term
نویسندگان
چکیده
In this paper, we propose a finite difference method for the Riesz space fractional diffusion equations with delay and a nonlinear source term on a finite domain. The proposed method combines a time scheme based on the predictor-corrector method and the Crank-Nicolson scheme for the spatial discretization. The corresponding theoretical results including stability and convergence are provided. Some numerical examples are presented to validate the proposed method. c ©2017 All rights reserved.
منابع مشابه
On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملNumerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term
Fractional differential equations have attracted considerable interest because of their ability to model anomalous transport phenomena. Space fractional diffusion equations with a nonlinear reaction term have been presented and used to model many problems of practical interest. In this paper, a two-dimensional Riesz space fractional diffusion equation with a nonlinear reaction term (2D-RSFDE-NR...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملNumerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator
In this paper, we present a numerical solution to an ordinary differential equation of a fractional order in one-dimensional space. The solution to this equation can describe a steady state of the process of anomalous diffusion. The process arises from interactions within complex and non-homogeneous background. We present a numerical method which is based on the finite differences method. We co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018